
UNIVERSIDADE DE SÃO PAULO
Instituto de Ciências Matemáticas e de Computação

Smart-Air -Web: Uma solução full-stack para o controle
distribuído de sistemas de ar-condicionado

Felipe de Oliveira

São Carlos – SP

Smart-Air -Web: Uma solução full-stack para o controle distribuído
de sistemas de ar-condicionado

Felipe de Oliveira

Orientador: Prof. Dr. Júlio Cezar Estrella

Monografia final de conclusão de curso apresentada
ao Instituto de Ciências Matemáticas e de
Computação – ICMC-USP, como requisito parcial
para obtenção do título de Engenheiro de Engenharia
de Computação.
Área de Concentração: Sistemas Distribuidos

USP – São Carlos
Novembro de 2021

Oliveira, Felipe de
Smart-Air -Web: Uma solução full-stack para o

controle distribuído de sistemas de ar-condicionado /
Felipe de Oliveira. – São Carlos – SP, 2021.

48 p.; 29,7 cm.

Orientador: Júlio Cezar Estrella.
Monografia (Graduação) – Instituto de Ciências

Matemáticas e de Computação (ICMC/USP), São Carlos –
SP, 2021.

1. IoT. 2. Ar-Condicionado. 3. Aplicação Web. I.
Estrella, Júlio Cezar. II. Instituto de Ciências
Matemáticas e de Computação (ICMC/USP). III. Título.

Este trabalho é dedicado aos meus pais Solange e Douglas,a minha irma Amanda e a minha

namorada Carolina

Sem eles eu nunca teria chegado até aqui.

AGRADECIMENTOS

Agradeço a Deus, pela minha vida, a oportunidade de cursar a universidade dos meus
sonhos e por me dar forças para atravessar todos os momentos de dificuldades enfrentados ao
longo da vida na graduação.

Aos meus familiares que me apoiaram incondicionalmente durante a jornada na univer-
sidade. Em especial, minha irmã Amanda Seixas Oliveira, meus pais Solange de Souza Lima
Oliveira e Douglas José de Oliveira que não pouparam esforços de trabalho e incentivos para
que um pudesse cumprir esta jornada. Ao meu tio Roberto Lima (in memorian) que sempre me
apoiou.

À minha namorada, Carolina de Castilho Paneque Garcia, que com sua graça e sua
doçura, sempre me apoiou para vencer obstáculos difíceis durante o curso da graduação e
concedeu companhia para bons momentos de distração durante a vida universitária.

Ao meu amigo Pedro Cornachioni, com quem moro desde a chegada à São Carlos, que
concedeu cumplicidade em momentos ruins e bons, dentro e fora da universidade. E aos meus
amigos Ivan Sousa, Lucas Nobrega, João Pedro Torrezan e Gabriel Ribeiro pela amizade e
cumplicidade criada durante a convivência no curso juntos.

Aos professores, pelo compartilhamento de conhecimentos e pelas correções que permi-
tiram minha evolução durante o meu processo de formação profissional. Em especial, agradeço
ao Prof. Dr. Júlio Cezar Estrella pela disponibilidade da orientação e pelo acesso ao Laboratório
de Sistemas Distribuídos e Programação Concorrente (LaSDPC) e seus recursos computacionais
para que este trabalho fosse realizado. Agradeço também ao Cairo Neves por ter me auxiliado
com o desenvolvimento deste trabalho.

“Corte sua própria lenha. Assim, ela aquecerá você duas vezes.”

(Henry Ford)

RESUMO

OLIVEIRA, F.. Smart-Air-Web: Uma solução full-stack para o controle distribuído de
sistemas de ar-condicionado. 2021. 48 f. Monografia (Graduação) – Instituto de Ciências
Matemáticas e de Computação (ICMC/USP), São Carlos – SP.

A inclusão de dispositivos inteligentes para controlar aparelhos de ar-condicionado (AC) antigos
remotamente, através da rede Wi-Fi, concede uma alternativa barata para gerenciamento de
sistema de Internet das Coisas (IoT). O trabalho de automação dos AC antigos é extenso,
partindo da confecção de uma arquitetura de hardware que aciona comandos nos AC via sinal
infravermelho, bem como a necessidade de uma aplicação para controle desses aparelhos. Uma
solução para gestão remota dos sistemas de controle de refrigeração é uma aplicação Web
intuitiva que permite aos usuários enviar comandos aos AC à distância pela Internet, por meio
de diferentes dispositivos computacionais. Esta monografia está vinculada a um projeto, que
converte AC convencionais em dispositivos smart. Portanto, este trabalho tem como objetivo
complementar o sistema de controle dos AC, fornecendo a arquitetura e uma aplicação Web
para controle desses dispositivos compatível com smartphones, tablets, computadores pessoais,
contribuindo para minimizar o desafio da heterogeneidade de dispositivos de controle IoT ao
propor um Front-end leve, de fácil navegabilidade e consistência operacional. Como resultado
do trabalho desenvolvido, são apresentados os testes de controle do AC via internet e experiência
com usuário do laboratório.

Palavras-chave: IoT, Ar-Condicionado, Aplicação Web.

ABSTRACT

OLIVEIRA, F.. Smart-Air-Web: Uma solução full-stack para o controle distribuído de
sistemas de ar-condicionado. 2021. 48 f. Monografia (Graduação) – Instituto de Ciências
Matemáticas e de Computação (ICMC/USP), São Carlos – SP.

The inclusion of smart features to remotely manage older air conditioning (AC) units via Wi-Fi
provides an inexpensive alternative to control. Extensive work is necessary to automate older
appliances, beginning with the creation of the hardware architecture to control the AC units via
infrared signals and going on to the need for a specific control application. One solution for the
remote management of refrigeration control systems is an intuitive Web application that allows
users to control the refrigeration devices over the internet and from a distance. This paper is
linked to a project that converts conventional AC units into smart appliances. Thus, the purpose
of this work is to complement the AC control system, supplying it with an architecture and a Web
application to control the appliances which is compatible with smartphones, tablets, and desktop
computers, resolving the challenge of IoT control for heterogeneous devices and permitting a
light front-end interface with easy navigation and operational consistency. As a result of the
work done, the AC control tests via the Internet and the laboratory user experience are presented.

Key-words: IoT, Air Conditioning, Web Application.

LISTA DE ILUSTRAÇÕES

Figura 1 – Definição de Internet das Coisas. 22
Figura 2 – Foto do circuito Smart-Air no laboratório. 23
Figura 3 – Fluxo de comunicação com o protocolo HTTP. 24
Figura 4 – Fluxo de comunicação com o protocolo MQTT. 24
Figura 5 – Fluxo de requisições Server-Side Rendering (SSR). 26
Figura 6 – Arquitetura Micro Front-end. 27
Figura 7 – Foto do Cluster Tauros no LaSDPC. 28
Figura 8 – Esquema do fluxo de comunicação do protótipo Smart-Air Web até o aparelho

ar-condicionado. 34
Figura 9 – Foto do controle remoto do ar-condicionado testado no projeto Smart-Air. . 35
Figura 10 – Diagrama de Casos de uso do Smart-Air Web. 36
Figura 11 – Mockup do Smart-Air Web. 37
Figura 12 – Declaração do parâmetro para envio de mensagens ao Broker MQTT. 39
Figura 13 – Propriedade do CSS para ajuste do tamanho de elementos do HTML, a partir

da resolução de tela dos usuários. 40
Figura 14 – Interface de login do Smart-Air Web no monitor de um desktop. 41
Figura 15 – Interface de controle do Smart-Air Web no monitor de um desktop. 42
Figura 16 – Interfaces de login e controle do Smart-Air Web na tela de um smartphone. . 42
Figura 17 – Snapshot do trafego de rede no Browser do usuário. 43

LISTA DE ABREVIATURAS E SIGLAS

AC Ares-Condicionados

API Application Programming Interface

CoAP Constrained Application Protocol

GUI Interfaces Gráficas

HTTP HyperText Transfer Protocol

HVAC Heating, Ventilation, and Air Conditioning

IoT Internet of Things

IU Interfaces de Usuário

JSON JavaScript Object Notation

LaSDPC . . Laboratório de Sistemas Distribuídos e Programação Concorrente

M2M Machine-to-Machine

MQTT . . . Message Queue Telemetry Transport

MVC Model-View-Controller

OASIS . . . Organization for the Advancement of Structured Information Standards

QoS Quality of Service (Qualidade de Serviço)

rem Root Element

RNN Random Neural Network

SAE Sistemas de Automação de Edifícios

SCA Sistema de Controle de AC

SSR Server Side Rendering

URL Uniform Resource Locator

USP Universidade de São Paulo

WC Web Componentes

SUMÁRIO

1 INTRODUÇÃO . 19
1.1 Contextualização . 19
1.2 Motivação e Objetivos . 19
1.3 Organização . 20

2 MÉTODOS, TÉCNICAS E TECNOLOGIAS UTILIZADAS 21
2.1 Considerações Iniciais . 21
2.2 Internet das Coisas (Internet of Things, IoT) 21
2.3 Microcontrolador ESP32 . 22
2.4 Protocolos de Comunicação . 23
2.4.1 Protocolo de Transferência de Hipertexto (do inglês, HyperText

Transfer Protocol (HTTP)) . 23
2.4.2 Transporte de Filas de Mensagem de Telemetria (do inglês, Mes-

sage Queue Telemetry Transport (MQTT)) 23
2.5 Recursos e técnicas utilizadas para desenvolvimento do Front-end

Web . 25
2.5.1 Biblioteca React Js . 25
2.5.2 Framework Next.Js . 25
2.5.3 TypeScript . 26
2.5.4 Micro Front-end . 26
2.6 Cluster Taurus . 27
2.7 Considerações Finais . 28

3 TRABALHOS RELACIONADOS . 29
3.1 Considerações Iniciais . 29
3.2 Trabalhos Relacionados . 29
3.3 Considerações Finais . 31

4 DESENVOLVIMENTO . 33
4.1 Considerações Iniciais . 33
4.2 O Projeto . 33
4.3 Atividades Realizadas . 34
4.3.1 Modelagem da arquitetura para controle dos AC pela aplicação Web 34
4.3.2 Requisitos da aplicação Web . 35

4.3.3 Implementação . 38
4.4 Considerações Finais . 40

5 RESULTADOS . 41
5.1 Considerações Iniciais . 41
5.2 Protótipo do Front-end Smart-Air Web 41
5.3 Depoimento de uso do usuário . 43
5.4 Considerações Finais . 43

6 CONCLUSÃO . 45
6.1 Contribuições . 45
6.2 Trabalhos Futuros . 45

REFERÊNCIAS . 47

19

Capítulo 1

INTRODUÇÃO

1.1 Contextualização

Nos últimos anos, a Internet das Coisas (do inglês, Internet of Things (IoT)) se tornou
uma das tecnologias mais importantes no cotidiano do século XXI. Diversos objetos do cotidiano
- industriais, agrícolas e residenciais - podem se conectar à Internet e prover funcionamento
inteligente. A combinação desses objetos conectados, possibilita projetos de Sistemas de Au-
tomação de Edifícios (SAE), que visam alcançar eficiência dos custos com energia consumida
pelos espaços dos edifícios por intermédio de controle automático e remoto do ambiente interno
gerenciando sistemas de aquecimento, ventilação, iluminação e ar-condicionado utilizando sen-
sores e dispositivos de acionamento interligados em uma rede sem fio com acesso à Internet.
Além da otimização do consumo de energia, os SAE trazem conforto e praticidade aos usuários
humanos, ao permitir o controle remotamente via aplicações mobile i.e. Web (DRöGEHORN et

al., 2017)).

Contudo, o processo de implementação de sistemas IoT apresenta grandes desafios. Um
dos principais é lidar com equipamentos legados, aparelhos antigos que já estão instalados no
ambiente cuja substituição é custosa. A substituição desses equipamentos antigos por novos Ares-
Condicionados (AC) inteligentes é caro e, em caso de instituições públicas como a Universidade
de São Paulo (USP), que requer processo de licitação e orçamento compartilhado com diversas
obrigações para funcionamento da universidade, levará muitos anos para ocorrer aquisições
de novos equipamentos. Face a esse desafio, o projeto ao qual este trabalho está vinculado,
apresenta uma solução mais barata e rápida, incluindo um sistema composto por sensores
infravermelho e micro controladores para converter aparelhos de AC de legado em equipamento
smart, possibilitando a sua interação em um ecossistema IoT. Tal ação de melhoria nesses
AC, oferecem o benefício da economia de energia elétrica ao possibilitar maior controle dos
dispositivos em funcionamento e abre a possibilidade de conforto aos usuários humanos controlar
funções desses AC remotamente.

1.2 Motivação e Objetivos

Este trabalho tem por objetivo apoiar um projeto de IoT que converte AC de legado em
dispositivos smart, por meio de um Sistema de Controle de AC (SCA) por sensores infravermelho

20 Capítulo 1. Introdução

e micro controladores que possibilitam a sua interação em um ecossistema IoT. Portanto, este
trabalho propõe a arquitetura de uma solução Web para controle remoto do sistema de automação,
apresentando o desenvolvimento de uma aplicação Front-end Web que é integrado com SCA.
Esta integração é realizada por um serviço de comunicação que utiliza protocolos HTTP e
MQTT, a fim de possibilitar que usuários consigam acionar comandos nos AC por um Browser

em qualquer computador pessoal ou mobile pela internet, sem a necessidade de estar presente
no ambiente refrigerado pelo AC. O Front-end é desenvolvido utilizando conceitos de Web

components, context, possibilitando escalabilidade de mais equipamentos convertidos em smart

e transparência para equipes de desenvolvimento futuras.

1.3 Organização
Esta monografia do projeto de graduação está estruturada da seguinte forma: o Capítulo 2,

aborda os métodos, técnicas e tecnologias utilizadas no desenvolvimento deste projeto. Em
seguida no Capítulo 3, são apresentados os trabalhos relacionados que sumarizam uma análise
relevante para o desenvolvimento deste trabalho. No Capítulo 4, são apresentadas as atividades
desenvolvidas neste trabalho, abordando a compreensão dos requisitos do sistema de automação
dos ares-condicionados (AC), a descrição da arquitetura da aplicação Web proposta e o fluxo de
desenvolvimento do protótipo Front-end, bem como a sua integração com o hardware de borda
que comanda o AC. No Capítulo 5 são discutidos os resultados obtidos. Por fim, no Capítulo 6 é
apresentada a conclusão do trabalho, bem como uma listagem de trabalhos futuros e a relação do
projeto com o curso de graduação.

21

Capítulo 2

MÉTODOS, TÉCNICAS E TECNOLOGIAS
UTILIZADAS

2.1 Considerações Iniciais

Nesta seção pretende-se apresentar conceitos referentes a IoT, os elementos computa-
cionais utilizados no contexto deste trabalho, ou seja, o NodeMCU ESP32, microcontrolador
utilizado para controle do ares condicionados, o Cluster Taurus, que provém sustentação para
a comunicação entre o micro controlador e o Front-end. Apresenta também as linguagens de
programação e ferramentas utilizadas no desenvolvimento do protótipo, bem como os protocolos
utilizados na comunicação entre o dispositivo controlado e o Front-end.

2.2 Internet das Coisas (Internet of Things, IoT)

A Internet das Coisas, do inglês do inglês, Internet of Things (IoT), vem se popularizando
com a expansão tecnológica que o mundo passa. Em (SÁTYRO et al., 2018) IoT é definido
pela concepção de se conectar diferentes objetos utilizados no cotidiano, como carros, eletrodo-
mésticos e máquinas industriais à Internet, como representado na Figura 3. Assim, é possível
acessá-los remotamente por computadores pessoais, tablets, celulares ou outros por meio da
Internet. Formulada em 1999, por uma startup do empresário britânico Kevin Ashton, teve uma
ideia que descreveu a Internet das coisas como um sistema que conectaria computadores com
sensores onipresentes com uma intensa troca de dados. Em meados dos anos 2009, a quanti-
dade de dispositivos à rede já era maior que a população mundial, consolidando também outra
terminologia para IoT, a “internet de tudo” (WITKOWSKI, 2017).

22 Capítulo 2. Métodos, Técnicas e Tecnologias Utilizadas

Figura 1 – Definição de Internet das Coisas.

Fonte: (RAJPUT, 2020)

2.3 Microcontrolador ESP32

Os módulos microcontroladores são opções baratas na implementação de projetos de
IoT. Neste trabalho em questão, é utilizado o ESP32, sistema em um chip, do inglês System on a

Chip (SoC), em outras palavras, é um único chip que é capaz de conter memória, CPU e módulo
de conectividade (Wi-Fi e Bluetooth) (BERTOLETI, 2019). A aplicação do ESP32 no projeto
da conversão do ares-condicionados antigos em smart para controle de envios e recebimento
de comando via sensores de infravermelhos acoplados em sua interface de comunicação foi
vantajosa, pois o módulo possui dimensões pequenas para alocação embarcada em espaço
reduzido, é programável em diversas linguagens de programação como C e C++, possui custo
baixo e baixo consumo de potência em seu funcionamento. Na Figura 2, é apresentado o circuito
do sistema IoT Smart-Air, utilizado neste projeto. Nele estão presentes uma ESP32, sensor
infravermelho para envio do sinal ao AC e outros componentes elétricos (TRAZZI, 2021).

2.4. Protocolos de Comunicação 23

Figura 2 – Foto do circuito Smart-Air no laboratório.

Fonte: Elaborado pelo autor.

2.4 Protocolos de Comunicação

2.4.1 Protocolo de Transferência de Hipertexto (do inglês, Hyper-
Text Transfer Protocol (HTTP))

Em (KUROSE; ROSS, 2013) o protocolo HyperText Transfer Protocol (HTTP) é deline-
ado como sendo uma camada de aplicação da Web, onde dois programas, o cliente e o servidor,
comunicam-se entre si por meio da troca de mensagens. O protocolo estabelece a estrutura da
mensagem e a maneira como ela será publicada e recebida pelo receptor. No contexto da Internet,
um browser (cliente) troca objetos Web (páginas inteiras ou atributos) com um servidor Web
e este, por sua vez, é localizado através de um endereço Uniform Resource Locator (URL).
Quando um usuário deseja carregar uma página Web, o browser envia uma requisição HTTP para
um servidor (via endereço URL), que recebe a mensagem e retorna a resposta com os objetos
requisitados.

2.4.2 Transporte de Filas de Mensagem de Telemetria (do inglês,
Message Queue Telemetry Transport (MQTT))

Criado no final da década de 90 nos laboratórios da IBM (YUAN, 2017), o Message

Queue Telemetry Transport (MQTT) é um protocolo de comunicação padronizado pela Orga-

nization for the Advancement of Structured Information Standards (OASIS)). Possui lógica
de operação simples e é muito aplicado em projetos de IoT pelo baixo consumo de potência
elétrica e baixo consumo de banda. O MQTT funciona no mecanismo publish/subscribe com
comportamento assíncrono, ou seja, é um protocolo de comunicação em que o emissor e receptor
não operam sincronamente, evitando que o emissor se mantenha no aguardo da resposta de uma

24 Capítulo 2. Métodos, Técnicas e Tecnologias Utilizadas

Figura 3 – Fluxo de comunicação com o protocolo HTTP.

Fonte: (KUROSE; ROSS, 2013).

mensagem enviada ao receptor, favorecendo seu uso no ecossistema IoT em que em muitos casos
o ambiente de operação dos sensores de borda é hostil com instabilidade na disponibilidade de
Internet.

As mensagens enviadas com protocolo MQTT são compostas de dois elementos, a
mensagem que pode ser um JavaScript Object Notation (JSON)) e o tópico que é a identidade
dos dispositivos de destinação das mensagens. O Broker é o sistema de gerenciamento das men-
sagens transportadas pelo protocolo MQTT, recebendo as mensagens geradas pelo publishers e
encaminhando-as a um cliente que consumirá a mensagem, subscribers. O Broker pode interme-
diar mensagens de um computador, componente eletrônico e/ou microcontrolador, identificar o
tópico de destino e orientar o fluxo da mensagem até o receptor (subscriber), que também pode
ser um dispositivo, possibilitando assim, a interação Machine-to-Machine (M2M). Na Figura 4
há uma ilustração do fluxo de comunicação MQTT.

Figura 4 – Fluxo de comunicação com o protocolo MQTT.

Fonte: (KODALI, 2016).

2.5. Recursos e técnicas utilizadas para desenvolvimento do Front-end Web 25

2.5 Recursos e técnicas utilizadas para desenvolvimento
do Front-end Web

2.5.1 Biblioteca React Js

React Js é um biblioteca do JavaScript para construção de Interfaces de Usuário (IU).
Foi desenvolvida pelo Facebook em 2013, e é atualmente uma lib open-source, utilizada mun-
dialmente em aplicações de grandes empresas como Instagram, AirBnB, Netflix e Yahoo (GE-
EKHUNTER, 2019). Esse sucesso de adoção do React é justificado pela qualidade e eficiência
das Interfaces Gráficas (GUI) geradas a partir do framework, sendo categorizada como V pela
Model-View-Controller (MVC) (HOSTINGER, 2021).

A utilização do React também é vantajosa pela praticidade de aprendizado, visto que ele
utiliza a extensão .JSX, uma sintaxe expandida do JavaScript que permite combinar HTML com
JavaScript, bem como, a atualização e renderização exclusiva dos componentes modificados
durante o desenvolvimento das aplicações.

O desenvolvimento de grandes sites com equipes numerosas de desenvolvedores e a
manutenção dessas aplicações baseadas em React são facilitadas pelo suporte ao conceito de
Web Componentes (WC). A criação de WC introduz uma forma moderna de encapsulamento
de frações das aplicações com a possibilidade de fluxo de dados entre componentes pela imple-
mentação de Contexts. Com o React também é possível desenvolver aplicativos mobile e, assim,
favorecer o desenvolvimento de sistemas multiplataformas (SOURCE, 2021).

2.5.2 Framework Next.Js

No mundo do desenvolvimento Front-end busca-se cada vez mais construir interfaces
com design de alta qualidade e eficiência de desempenho. Next.Js é definido em (GEEKHUN-
TER, 2021) como um framework para React que acrescenta diversas funcionalidades para
desenvolvimento de IU. As aplicações Web tradicionais utilizam a arquitetura client-side que
carrega todo o JavaScript e o bundle antes da apresentação completa de uma página, o que gera
lentidão e desconforto aos usuários durante uma interação humano-computador (ALURA, 2021).

Como uma opção mais eficiente em tempo de carregamento e baixo consumo de largura
de banda, o Next.Js apresenta o conceito Server Side Rendering (SSR). O esquema apresentado
na Figura 5, demonstra o seu funcionamento, onde as renderizações de interfaces são feitas
pelo lado do servidor, ou seja, quando um cliente solicita ao Back-end uma página, o Next.Js

solicita os dados ao Back-end, que são retornados JSON e, então, o Next.Js renderiza os dados,
retornando-os em formatos HTML para o cliente. Assim, com a renderização no servidor,
diminui-se o tempo de carregamento da aplicação no Browser (cliente), uma vez que o custo
computacional está relacionado à parte do próprio servidor, consumindo menos recursos dos
usuários. Além disso, o Next.Js implementa uma série de outros recursos, como: suporte a sistema

26 Capítulo 2. Métodos, Técnicas e Tecnologias Utilizadas

de rotação, implementação de aplicações Back-end, possui CSS modularizado e Fast Refresh,
que atualiza componentes específicos de uma página Web sem a necessidade de atualizá-la por
inteiro, mantendo assim os valores das variáveis (VERCEL, 2021).

Figura 5 – Fluxo de requisições Server-Side Rendering (SSR).

Fonte: Elaborado pelo autor.

2.5.3 TypeScript

O Typescript foi criado em 2012 pela Microsoft com a missão de acrescentar recursos ao
JavaScript. Typescript é definido em (GEEKHUNTER, 2021) como uma linguagem open-source

que complementa recursos adicionais ao JavaScript. Suas principais vantagens de uso são a
tipagem estática, ou seja, aquele em que o tipo das variáveis são visíveis no código e orientação
a objetos - o JavaScript nativo, permite somente programação estruturada, oferecendo assim
mais recursos para aplicações mais completas e melhora no processo de desenvolvimento em
códigos fontes extensos com muitos desenvolvedores trabalhando em conjunto(ABREU, 2017).

A biblioteca React, baseada também em JavaScript, pode ser utilizada em conjunto com
Typescript durante o desenvolvimento de aplicações Web. Ao criar projetos React, basta incluir o
Typescript nas configurações e utilizar as extensões de arquivos .ts ou .tsx.

2.5.4 Micro Front-end

Introduzido pela primeira vez em 2016 no Technology Radar da ThoughtWorks 1, a
técnica micro Front-ends consiste na utilização da arquitetura de microsserviços que combinados
1 ThoughtWorks

https://www.thoughtworks.com/radar

2.6. Cluster Taurus 27

compõem o Front-end, conforme ilustado em Figura 6. Com ela é possível que o código de
cada serviço seja independente e auto-contido, ou seja, privado de variáveis globais e com-
partilhamento de estado, possibilitando a utilização de recursos do browser ao invés de API
customizadas. Os times de desenvolvimento são capazes de atuar mutuamente em um projeto
desenvolvendo serviços independentes e consistência de UI/UX ao permitir aos usuários uma
experiência transparente entre as micro aplicações (MOVILE, 2021).

Figura 6 – Arquitetura Micro Front-end.

Fonte: (EBERHARDT, 2021)

2.6 Cluster Taurus
O Cluster Taurus 1 apresentado na Figura 7 é a infraestrutura presente no LaSDPC que

hospeda os serviços em nuvem utilizados nos trabalhos de IoT do laboratório. Para este projeto,
ele hospeda o Broker Aedes situado no endereço andromeda.lasdpc.icmc.usp.br responsável por
suportar o fluxo de mensagens entre a ESP32 e o serviço de postagem de mensagens ao MQTT
pelo lado do Front-end por meio de acesso à Internet e comunicação pelo protocolo HTTP.
Este serviço em nuvem foi benéfico para o desenvolvimento do Front-end e posterior testes de
comunicação com um computador pessoal distante do laboratório, ambiente de desenvolvimento
do protótipo Web.

1 http://infra.lasdpc.icmc.usp.br

28 Capítulo 2. Métodos, Técnicas e Tecnologias Utilizadas

Figura 7 – Foto do Cluster Tauros no LaSDPC.

Fonte: Elaborado pelo autor.

2.7 Considerações Finais
Este capítulo abordou conceitos utilizados em projetos de automação predial, tais como

a definição de IoT, Microcontrolador ESP32, os protocolos de comunicação HTTP e MQTT.
Também foram abordados os recursos para desenvolvimento do Front-end protótipo, React Js,
Next.Js e Typescript. Por fim, é apresentado o Cluster Taurus, infraestrutura que hospeda serviços
utilizados nos projetos IoT do LaSDPC. A apresentação desta seção é importante, pois introduz
o entendimento de conceitos utilizados no tópico de desenvolvimento presente no Capítulo 4.

29

Capítulo 3

TRABALHOS RELACIONADOS

3.1 Considerações Iniciais

Nesta seção 3.2 são apresentados trabalhos científicos relacionados a esta monografia.
Nestes artigos são feitas análises sobre as características, métodos e desafios dos sistemas de IoT
atuais. Por fim, são apresentados em cada parágrafo conclusões que fomentam o desenvolvimento
deste trabalho.

3.2 Trabalhos Relacionados

Em (BADER et al., 2016) são discutidos os desafios associados à capacitação dos
dispositivos IoT em processar análises no Front-end. São tratados os sistemas de IoT atuais
baseados em back-end, as informações coletadas entre dispositivos vizinhos são direcionados
a uma central de back-end para que, a partir do processamento do dado recebido, o sistema
realize a tomada de decisão e, só assim, envie um comando para executar uma reação necessária.
A arquitetura back-end gera inúmeros desafios de heterogeneidade, custo de latência, largura
de banda, aplicações pouco eficientes e desafio da Quality of Service (Qualidade de Serviço)
(QoS). Em um caminho contrário à arquitetura tradicional, o paradigma Front-end é apresentado
pelo autor por meio de um novo design da estrutura IoT baseada nas tomadas de decisões
no Front-end, que considera três perspectivas: o aplicativo, a conectividade e a colaboração.
O paradigma Front-end habilita os dispositivos para terem inteligência de tomada de decisão
in-situ baseado nas informações coletadas dos sensores próximos e conectados diretamente entre
si, possibilita aplicações otimizadas, garante sistemas críticos que demandam latência baixa e
alta largura de banda operando dentro da expectativa dos usuários. Para isso, são citados dois
exemplos: CROWD MANAGEMENT: Conglomerado de câmeras que fornece uma resolução
espacial ampla que identifica a multidão em HD fazendo distinção de gênero, idade e realização
da análise em tempo real dessas informações. CYBER-PHYSICAL SYSTEMS: Streaming de
vídeo ao vivo que possibilita equipes de segurança em campo de batalha terem maior campo de
visão, visto o compartilhamento entre os próprios dispositivos do cluster e a central de controle
simultâneo.

Em (ADIONO et al., 2018) é apresentado um aplicativo para sistema operacional mobile

Android, que visa, por meio de uma arquitetura IoT, acessar e controlar eletrodomésticos de

30 Capítulo 3. Trabalhos Relacionados

uma casa inteligente, minimizando o consumo de energia elétrica. Por meio de um sistema
dividido em dois ambientes (interno/externo), o aplicativo consulta status e altera-os com base
em programação pré-determinada. No ambiente interno é apresentado um subsistema em nós
com host e roteadores para acesso à Internet. Já no ambiente externo, tem-se um servidor em
nuvem e um aplicativo cliente, que acessa o back-end em nuvem. Toda a comunicação entre
os ambientes é baseada na criptografia RSA e AES. O fluxo de dados do sistema é baseado no
tipo de dados JSON, que é manipulado pelo aplicativo utilizando o protocolo de comunicação
AMQP e o intermediário de mensagem RabbitMQ para interagir com o back-end em nuvem do
sistema. Com o aplicativo mobile, o sistema permite um controle remoto, semelhante ao trabalho
proposto nesta monografia.

Em (VERMA et al., 2019) é feito um estudo do cenário atual da tecnologia IoT em
edifícios inteligentes. São introduzidas as camadas de um sistema de IoT, passando pelo pro-
tocolo de comunicação LoRa que tem vantagens de longo alcance, baixo consumo de energia,
comunicação bidirecional, segurança, padronização, alta capacidade de transmissão e baixo custo.
A arquitetura analisada utiliza um controlador inteligente, Random Neural Network (RNN)
para gerenciar a operação de Heating, Ventilation, and Air Conditioning (HVAC). O controle
inteligente feito pelo RNN gera uma economia no consumo de energia do sistema de ventilação
de 27,12% menor, se comparado aos controladores baseados em regras comuns. Há a observação
de preferência pela escolha do sistema de autenticação baseada em Kerberos para oferecer
segurança em uma vasta gama de dispositivos físicos que podem ser conectados no sistema IoT.
É apresentada a perspectiva de uso do protocolo de comunicação ZigBee que apresenta baixo
consumo de potência, porém com baixa taxa de transferência. Enquanto o Wi-Fi, protocolo mais
conhecido e utilizado nos sistemas de IoT atualmente, este oferece maior taxa de transferência e
alcance, porém tem como desvantagem um maior consumo de potência.

Em (DRöGEHORN et al., 2017) é apresentado o desenvolvimento de um protótipo Web
para Front-end de um sistema de automação residencial, que visa melhorar a gestão do consumo
de energia residencial utilizando uma interface amigável e usualmente útil. Para isso, foi abordada
uma análise qualitativa de dados para se chegar em requisitos funcionais que resultam em uma
IU interativa e responsiva para o sistema de automação residencial. No desenvolvimento deste
protótipo Front-end que interage com sistema heterogêneo IoT são combinadas as linguagens
JavaScript, CSS e HTML. Por fim, é realizada uma pesquisa de satisfação de usabilidade da
interface de automação residencial projetada para entender como os diferentes usuários, em
idade e níveis de conhecimento técnico, se sentiram na interação com a interface do sistema.
O resultado compilado mostra um alto grau de satisfação, e a interface se mostrou de fácil
aprendizado e coberta de funcionalidades úteis.

Em (HEJAZI et al., 2018) é apresentado uma visão geral sobre IoT, partindo para uma
discussão sobre os protocolos adotados em algumas plataformas de gerenciamento mais conheci-
das, disponíveis no mercado. Nele são explicados os componentes de uma plataforma IoT, desde

3.3. Considerações Finais 31

uma perspectiva dos dispositivos de sensoriamento que captam as condições físicas do ambiente
até o controle de equipamentos. Apresenta-se como foco principal da análise os protocolos de
comunicação Constrained Application Protocol (CoAP) e Message Queue Telemetry Transport

(MQTT), discutindo a holística de cada um. Conclui-se que a escolha de uso desses protocolos
dependem dos objetivos do sistema IoT, em que a perspectiva MQTT é baseada em TCP e
favorece aplicações que utilizam WAN para sistemas remotos, enquanto a perspectiva CoAP é
compatível com o protocolo HTTP e utiliza o protocolo UDP, útil em serviços baseados em Web
que requerem transmissão em alta velocidade. Ao todo foram comparadas 20 plataformas de IoT,
levando em consideração gerenciamento de dispositivos, recurso de integração, protocolos de
segurança, protocolo para coleta de dados, tipo de análise e suporte de visualização para gerenci-
amento do sistema. O resultado do estudo, mostra grande heterogeneidade dos componentes de
fabricante para fabricante, mas mostra que 95% desses sistemas utilizam integração API REST,
concluindo-se que há uma forte tendência das arquiteturas IoT se aproximarem do uso de Web

Services.

3.3 Considerações Finais
Este capítulo apresentou uma série de trabalhos relacionados com a proposta desenvolvida

nesta monografia. Com base nos trabalhos estudados, esta monografia propõe um Front-end

Web de controle, em meio aos desafios da heterogeneidade dos sistemas IoT e as vantagens de
controle remoto e eficiente para os usuários dos sistemas de ar-condicionado do laboratório. Os
trabalhos analisados nesta seção transmitem uma ideia de processo continuo de melhoria dos
sistemas de IoT, o que permite trabalhos de evolução do Smart-Air.

33

Capítulo 4

DESENVOLVIMENTO

4.1 Considerações Iniciais

Este capítulo tem o objetivo de descrever a arquitetura do sistema de controle dos AC e
apresentar o processo de desenvolvimento do protótipo Front-end Web. No capítulo é apresentado
a fase inicial de compreensão do projeto Smart-Air, ao qual este trabalho o complementa, e
as etapas de análise de requisitos, modelagem do Front-end, implementação do protótipo e
integração com o Broker Aedes.

4.2 O Projeto

A proposta deste trabalho surgiu pela necessidade do projeto IoT denominado Smart-Air

(TRAZZI, 2021), ao qual este trabalho está vinculado, ter uma arquitetura de aplicação para
controle do AC à distância via Internet documentada e um protótipo Front-end eficiente em
diversos modelos de computadores (tablets, smartphone, desktop) com interface amigável para
acessibilidade de usuários de diferentes faixas etárias. Até o início deste projeto, o acionamento
de comandos no AC convertidos em smart era feito por meio do Node-RED2, uma ferramenta de
programação com interface de blocos que possibilita conectar-se a hardwares com o protocolo
MQTT e acionar manualmente o conceito publish/subscribe. Diferentemente do modelo utili-
zando Node-RED, a arquitetura deste projeto permite acrescentar diversos dispositivos smart

sem gerar grande complexidade visual e, assim, habilita a escalabilidade futura do processo de
automação dos AC a todo o campus universitário da USP em São Carlos-SP, onde o sistema
Smart-Air está sendo desenvolvido e testado em laboratório.

Como explicado em mais detalhes na sequência, o desenvolvimento da aplicação Web
de controle do AC é realizado baseado em React Js para a composição da aplicação com Web

components. Também são utilizados Typescript para acrescentar facilidade ao desenvolvimento e
proporcionar mais transparência na compreensão do código fonte do Front-end programado aos
futuros desenvolvedores que irão evoluí-lo e Next.Js para abordagem da arquitetura SSR, visando
apresentar um Front-end eficiente. O acionamento dos AC será feito por meio da interface e
percorrerá a estrutura arquitetada na subseção 4.3.1.

2 Node-RED

https://nodered.org/

34 Capítulo 4. Desenvolvimento

4.3 Atividades Realizadas

4.3.1 Modelagem da arquitetura para controle dos AC pela aplicação
Web

Elaborada para possibilitar testes de acionamento dos comandos pela aplicação desen-
volvida neste trabalho, a arquitetura apresentada nesta seção emprega o uso de micro serviço
Front-end para integração da camada de aplicação Web com a camada do sistema Smart-Air.
Tal serviço que é independente e implementado o componente do Front-end que renderiza as
páginas pelo lado servidor (Next.Js), fez uso do protocolo HTTP para possibilitar a comunicação
com o Broker MQTT, hospedado no Cluster Taurus.

A aplicação Web foi projetada para possibilitar o acionamento de botões implementados
dentro de Web components, na qual cada componente corresponde à uma funcionalidade especí-
fica dos AC. Portanto, o fluxo do acionamento dos AC pela aplicação Web é representado na
Figura 8. Na primeira etapa deste fluxo o usuário aciona os botões das funções na interface do
Smart-Air Web, enviando o comando ao Broker MQTT via método POST, em que a mensagem
enviada é um JSON que contém o tópico (endereço do equipamento smart) e os comandos que se
deseja executar no AC. O Broker, por sua vez, receberá o payload da mensagem e irá reconhecer
o tópico recebido e, assim, direciona os comandos à ESP32 que os processará e irá enviar um
comando via sinal infravermelho para o AC alterar o seu estado de funcionamento.

Figura 8 – Esquema do fluxo de comunicação do protótipo Smart-Air Web até o aparelho ar-condicionado.

Fonte: Elaborado pelo autor.

4.3. Atividades Realizadas 35

4.3.2 Requisitos da aplicação Web

Antes de dar início à implementação do protótipo Smart-Air Web, foi realizada a enge-
nharia de software, conforme proposto por Wazlawick (2019), para compreender os requisitos
funcionais e não-funcionais que a aplicação requer para controle de um AC. Nesta fase foi
feita uma inspeção do projeto Smart-Air, bem como uma breve investigação de funcionalidades
presentes no controle remoto do AC Fujitsu, observado na Figura 9, em que os componentes de
comando do protótipo foram inspirados.

Figura 9 – Foto do controle remoto do ar-condicionado testado no projeto Smart-Air.

Fonte: Elaborado pelo autor.

O diagrama de casos de uso da Figura 10, demonstra a ideia obtida dos requisitos de
funcionalidade levantados para o sistema de controle operar sobre a arquitetura proposta na
subseção 4.3.1. Nele, o Ator Usuário poderá interagir com as funcionalidades dos comandos
similares ao do controle remoto do AC, sobre o sistema Smart-Air Web e o Ator Broker receberá
o comando e o endereça ao Ator Sistema Ar-Condicionado.

36 Capítulo 4. Desenvolvimento

Figura 10 – Diagrama de Casos de uso do Smart-Air Web.

Fonte: Elaborado pelo autor.

As funcionalidades apresentadas são compatíveis com uma alta gama de modelos e
marcas de aparelhos de ar-condicionado. Portanto, a seguir são apresentadas as funcionalidades
de controle implementadas no projeto:

∙ Power (ligar e desligar): Funcionalidade liga e desliga o AC deve ser capaz de acionar
o envio da mensagem ao dispositivo de hardware ESP32 que aciona o comando no AC,
passando como dado o valor “0” para desligar e “1” para ligar;

∙ Timer: A funcionalidade Timer deve ser capaz de possibilitar o ajuste de tempo para que
seja enviada a mensagem de desligar ao dispositivo de hardware ESP32 que aciona o
comando no AC. Ao programar o tempo máximo no relógio para desligamento do AC a
contagem regressiva é acionada ao clicar no botão principal. Assim, logo quando terminar
a contagem no instante 00:00, é acionada a funcionalidade desligar do componente Power,
enviando a mensagem com o dado “0”. Ao clicar no botão ou o temporizador completar a
contagem, o display do componente ON/OFF deve atualizar, apresentando OFF para o
caso de desligamento e ON para o caso de acionamento da funcionalidade. No término da
contagem o componente Power também deverá ter o display atualizado para o status OFF,
desligado;

∙ Temperature: A funcionalidade Temperature deve permitir ajustar a temperatura mo-
mentânea no AC. Ao clicar no botão down ou up, deverá ser enviada uma mensagem

4.3. Atividades Realizadas 37

ao dispositivo de hardware ESP32 com o valor do display do componente na interface.
Assim, será passado como dado o respectivo valor numérico da temperatura apresentada
no display. Este valor deve estar contido no intervalo de 16 oC à 30 oC;

∙ Mode: A funcionalidade Mode deve permitir selecionar um modo de operação momentânea
do AC. Ao selecionar o modo será enviado ao AC um valor representativo de cada um dos
modos implementados, portanto para o COOL será enviado o valor “0”, DRY enviará o
valor “1”, AUTO enviará o valor “2” e FAN enviará o valor “3”;

∙ Swing: A funcionalidade Swing deverá ser capaz de habilitar ou desabilitar a função swing

do AC, ao receber a interação de clique do usuário. Portanto, quando o usuário clicar no
botão será enviada uma mensagem ao dispositivo de hardware ESP32, contendo o dado
“0” para desligar a funcionalidade ou “1” para ligar a funcionalidade. Ao clicar no botão,
o display ON/OFF deve atualizar, apresentando OFF para o caso de desligamento e ON

para o caso de acionamento da funcionalidade.

Ademais, tem-se a preocupação dos requisitos não-funcionais que requerem uma aplica-
ção eficiente para carregamento em diferente dispositivos, estável capaz de enviar as mensagens
até chegar ao AC, deve ter usabilidade fluida e a manutenção em um componente não pode afetar
o funcionamento de outro, exceto quando feito no componente Power que há vínculo de uso no
componente Timer.

Essas funcionalidades descritas acima, foram desenhadas em um mockup das telas de
login e controle de AC, apresentado na Figura 11, como proposta inicial de layout do Smart-Air

Web. Esse recurso é importante, pois orienta a programação da interface com as características
de background que serão aplicadas no css do projeto.

Figura 11 – Mockup do Smart-Air Web.

Fonte: Elaborado pelo autor.

38 Capítulo 4. Desenvolvimento

4.3.3 Implementação

Dando início a implementação, foi criado um ambiente de desenvolvimento utilizando o
Visual Studio IDE 3 para organização e edição dos códigos fontes, bem como um repositório
para o Smart-Air Web4 no GitLab5 para versionamento e depósito desse códigos. Também
foi necessário instalar o gerenciador de pacote Yarn6, que proporciona um workspace para
compilação da aplicação durante o desenvolvimento e, com as múltiplas portas, permite HOST

para simular o servidor de consumo dos dados de autenticação em um Application Programming

Interface (API) local.

Com o ambiente de desenvolvimento preparado, foi criado um projeto utilizando o
Framework Next.Js junto à biblioteca React Js e o Typescript, visando aplicar boas práticas de
desenvolvimento a partir das tipagens explícitas de funções e atributos. Esses recursos foram
utilizados devido a fácil aprendizagem, disponibilidade de artifícios para desenvolvimentos
ágeis, suporte longínquo, ampla comunidade para troca de conhecimento, fácil manutenção e
possibilidade de escalabilidade do tamanho da aplicação. Outro motivo para uso do Next.Js

no projeto é a construção do protótipo com a arquitetura SSR, trazendo mais eficiência no
carregamento de páginas HTML, CSS e JS, uma melhor experiência do usuário se comparada a
arquiteturas de aplicações Web tradicionais.

As funcionalidades anteriormente descritas na subseção 4.3.2, são implementadas com
o React uma a uma em estruturas individuais Web components. Portanto, cada componente é
desenvolvido em um arquivo de extensão .tsx individual. Isso permite que durante a programação
de cada Web component a aplicação como o todo não seja interrompida, possibilitando também
atualizações correntes em seu css e funções programadas, baseadas em Typescript. Esse modelo
de desenvolvimento permite escalar novas funcionalidades sem comprometer a experiência de
transparência do usuário. Também foi necessário utilizar Context, método de desenvolvimento
em React para que dois ou mais Web components, possam se comunicar entre si. Essa técnica foi
utilizada para que o temporizador do Web component, possa acionar a função Power (desligar)
implementada no Web component Power, ao final da contagem regressiva do tempo programado
pelo usuário.

Os demais componentes preservaram a propriedade de encapsulamento, comunicando-se
somente com o serviço micro Front-end que envia as mensagens do acionamento de cada Web

component para o Broker MQTT Aedes6, que está hospedado no Cluster Taurus, acessado pela
URL http://andromeda.lasdpc.icmc.usp.br, através do protocolo HTTP. O serviço conecta o Front-

end com o Broker enviando alguns parâmetros em forma de JSON. São os parâmetros “topic” que
indicam qual dispositivo IoT conectado ao Broker receberá a mensagem de comando, “message”

3 Microsoft Visual Studio
4 Repositório Smart-Air Web
5 GitLab
6 Yarn
6 Aedes Broker MQTT

https://nodered.org/
https://gitlab.com/smartlaboratory/2021/smart-air-web
https://gitlab.com/
https://yarnpkg.com/
https://flows.nodered.org/node/node-red-contrib-aedes

4.3. Atividades Realizadas 39

é o comando explicito das ações que serão enviadas pelo dispositivo de controle ESP32 ao ar
condicionado, “retain” como “true” permite o Broker receber uma flag do dispositivo IoT se a
mensagem foi recebida com sucesso e o campo “qos” que define a Quality of Service (QoS) igual
a “2”, ou seja, dentro do protocolo MQTT, o QoS indica que o dispositivo subscribe receberá
a mensagem somente uma única vez, o que impede duplicação instantânea de mensagens. Na
Figura 12 é possível ver um exemplo da declaração do parâmetro JSON passado ao Broker, onde
“obj” é um elemento JSON com comandos múltiplos ao AC.

Figura 12 – Declaração do parâmetro para envio de mensagens ao Broker MQTT.

Fonte: Elaborado pelo autor.

O Front-end desenvolvido neste trabalho tem por premissa ser responsivo com boas
práticas de acessibilidade da interface orquestradas pelo The World Wide Web Consortium

(W3C)8. Portanto, buscou-se, na implementação da aplicação, customizar o CSS da interface
aplicando iniciativas como contraste de tons diferentes de cores entre botões e alerta de status
dos componentes (ON/OFF), botões ilustrados e com legendas para melhor compreensão de
seus propósitos, aplicação de fontes de tamanho M ou L, ajuste de dimensão do contêiner e dos
Web componentes da página declarados em Root Element (rem). Essa declaração permite aos
elementos ajustarem seu tamanho conforme resolução da tela do usuário, além da propriedade
@media para aplicar ajuste ao html da página Web, conforme a resolução da tela que a acessa. Na
Figura 13 a seguir é demonstrado um exemplo utilizado no css do Smart-Air Web, no qual aplica
um tamanho de 93,75% para elementos acessados em tela com resolução width até 1080px,
convencional em computadores pessoais, e o ajuste de tamanho 87,5% para resolução width de
até 720px, favorecendo uma melhor visualização em tablets e smartphones.

8 World Wide Web Consortium

https://www.w3.org/WAI/standards-guidelines/

40 Capítulo 4. Desenvolvimento

Figura 13 – Propriedade do CSS para ajuste do tamanho de elementos do HTML, a partir da resolução de tela dos
usuários.

Fonte: Elaborado pelo autor.

4.4 Considerações Finais
Este capítulo descreveu em detalhes o processo de desenvolvimento da arquitetura da

aplicação Web com o seu fluxo de dados entre o protótipo e o dispositivo IoT que controla o AC,
bem como detalha as funcionalidades adotadas nessa solução. Foi especificado as etapas desde a
criação do projeto Front-end até as técnicas para responsividade de acessibilidade na interface.

41

Capítulo 5

RESULTADOS

5.1 Considerações Iniciais
Este seção visa apresentar os resultados provenientes do trabalho desenvolvido no

Capítulo 4.

5.2 Protótipo do Front-end Smart-Air Web
Um dos principais objetivos deste trabalho, consistia em produzir um protótipo Front-

end do Smart-Air com uma interface amigável e desempenho adequado para controle de AC
à distância, via Internet. Portanto, as Figura 14 e Figura 15 apresentam, respectivamente, as
interface de login e controle dos AC da aplicação Web em um monitor de resolução 1440 x 900.

Figura 14 – Interface de login do Smart-Air Web no monitor de um desktop.

Fonte: Elaborado pelo autor.

A compatibilidade com outros dispositivos computacionais (smartphones e tablets)
também foi a missão deste projeto, com técnicas de auto ajuste de tamanho dos componentes,
conforme a resolução da tela dos usuários. Sendo assim, o acesso ao protótipo Smart-Air Web

em dispositivos mobile é apresentado na Figura 16. Neste teste de renderização do Front-end

42 Capítulo 5. Resultados

Figura 15 – Interface de controle do Smart-Air Web no monitor de um desktop.

Fonte: Elaborado pelo autor.

em um smartphone com resolução de tela 2400 x 1080, pode-se observar o auto ajuste dos Web
componentes das funções de controle do AC.

Figura 16 – Interfaces de login e controle do Smart-Air Web na tela de um smartphone.

Fonte: Elaborado pelo autor.

Conforme observado em Figura 17, também foi realizado um teste do tráfego de comu-

5.3. Depoimento de uso do usuário 43

nicação do protótipo com o sistema IoT de controle do AC. Nele foi obtido êxito no envio de
comandos ao servidor na nuvem endereçado em http://andromeda.lasdpc.icmc.usp.br:1880/ via
método POST do serviço HTTP. O recebimento da mensagem no circuito da ESP32 é obser-
vado por um retorno de confirmação, recebido via método GET na aplicação endereçada em
http://localhost:3000/.

Figura 17 – Snapshot do trafego de rede no Browser do usuário.

Fonte: Elaborado pelo autor.

5.3 Depoimento de uso do usuário
O Smart-Air Web foi testado por um integrante do laboratório, aqui denominado IL1, atra-

vés do acesso ao Front-end, endereçado na rede interna da USP, edoruam: http://172.26.102.20:3000/
e seu feedback sobre o protótipo foi o seguinte:

Após o uso da interface desenvolvida, algumas características chamam a aten-
ção, como a intuitividade da aplicação e também a rápida propagação do
comando ao ar condicionado, o qual responde praticamente instantaneamente
ao comando enviado. Vale acrescentar que a interface acrescenta muita comodi-
dade e praticidade ao uso do laboratório, já que em muitas ocasiões o controle
não se encontra um local de acesso, já a interface pode ser acessada em qualquer
lugar e instantaneamente. (IL1)

Com essa avaliação positiva do usuário, pode-se ter a percepção da facilidade em utilizar
a aplicação, bem como a sua relevância de uso no cotidiano do laboratório. Pesquisas de
usabilidade deverão ser realizadas nas próximas etapas do projeto.

5.4 Considerações Finais
Neste capítulo, foi possível observar as interfaces do protótipo Smart-Air Web em funcio-

namento nos browser de um dispositivo mobile e um notebook. Também foi possível observar o

44 Capítulo 5. Resultados

tráfego de comunicação da aplicação com o AC acionando funcionalidades remotamente. Por
fim, observou-se o feedback positivo da experiência de uso do protótipo por um usuário no
laboratório, onde o AC encontra-se instalado.

45

Capítulo 6

CONCLUSÃO

6.1 Contribuições
O trabalho buscou completar a necessidade do projeto Smart-Air (TRAZZI, 2021) ter

uma aplicação própria para controle dos AC. O modelo da implementação do Smart-Air Web,
permitiu que se obtenha e responsividade com as metas de sistemas distribuídos, principalmente
pela premissas de transparência de distribuição ao usuário e escalabilidade do sistema, pela
flexibilidade de se trabalhar com Web components. A aplicação demonstrou-se uma ferramenta
eficiente, visual agradável e de acordo com as boas práticas de acessibilidade de interface. A
arquitetura inicial, apresentada para funcionamento desta primeira versão do Smart-Air Web, tem
compatibilidade para acoplamento de outros elementos e, também, a possibilidade de expansão
de controle a outros dispositivos smart.

6.2 Trabalhos Futuros
Durante o desenvolvimento deste projeto, foram observadas importantes oportunidades

para trabalhos futuros, apontando-se as seguintes:

∙ Hospedagem do protótipo em container Docker na nuvem para possibilitar um ambiente
de desenvolvimento capaz de aplicar releases mais facilmente;

∙ Implementação de um back-end orientado a micro-serviços, hospedados em containers

Docker na nuvem. A adição deste item na arquitetura do Smart-Air, possibilitam otimizar
regras de negócios, bem como implementar recursos mais sofisticados à gestão do sistema,
tal como machine learning coletando dados e gerando insights de consumo, tempo de
utilização, relatórios importantes para gestão financeira das contas de energia e apoio à
decisão de substituir um equipamento AC por um mais novo;

∙ Aplicar testes de snapshots da interface React através de bibliotecas, como Jest9. Também
elaborar testes de carga com o framework Selenium10 no Front-end e aplicar testes de
volume com a ferramenta JMeter11 no back-end a ser desenvolvido;

9 Biblioteca Jest
10 Selenium
11 Apache JMeter

https://jestjs.io/pt-BR/docs/tutorial-react
https://www.selenium.dev/
https://jmeter.apache.org/

46 Capítulo 6. Conclusão

∙ Gerar uma galeria de Web components de funcionalidade para controle de AC compatíveis
com outras marcas de equipamento, bem como, espelhar o template do Smart-Air Web para
aplicações que controle outros dispositivos, como: televisores, ventiladores e lâmpadas.

47

REFERÊNCIAS

ABREU, L. Typescript: O javascript moderno para criação de aplicações. São Paulo, SP: FCA,
2017. Citado na página 26.

ADIONO, T.; HARIMURTI, S.; MANANGKALANGI, B. A.; ADIJARTO, W. Design of smart
home mobile application with high security and automatic features. In: 2018 3rd International
Conference on Intelligent Green Building and Smart Grid (IGBSG). [S.l.: s.n.], 2018. p. 1–4.
Citado na página 29.

ALURA. NextJS: por que usar? 2021. Internet. Disponível em: <https://www.alura.com.br/
artigos/next-js-vantagens>. Acesso em: 03 ago 2021. Citado na página 25.

BADER, A.; GHAZZAI, H.; KADRI, A.; ALOUINI, M.-S. Front-end intelligence for large-scale
application-oriented internet-of-things. IEEE Access, v. 4, p. 3257–3272, 2016. Citado na
página 29.

BERTOLETI, P. Projetos com ESP32 e LoRa. [S.l.]: Instituto NCB, 2019. Citado na página
22.

DRöGEHORN, O.; LESLIE, M.; PITTUMBUR, M.; PORRAS, J. Front-end development for
home automation systems-a design approach using javascript frameworks. In: . [S.l.: s.n.], 2017.
Citado 2 vezes nas páginas 19 e 30.

EBERHARDT, C. You probably don’t need a micro-frontend. 2021. Internet. Disponível em:
<https://blog.scottlogic.com/2021/02/17/probably-dont-need-microfrontends.html>. Acesso em:
23 oct 2021. Citado na página 27.

GEEKHUNTER. Um guia para usar React JS. 2019. Internet. Disponível em: <https://blog.
geekhunter.com.br/um-guia-para-usar-react-js/#O_que_e_realmente_o_React_JS>. Acesso em:
22 jul 2021. Citado na página 25.

. Entendendo Next.js e aplicando suas funcionalidades. 2021. Internet. Disponível em:
<https://blog.geekhunter.com.br/o-que-e-next-js/#O_que_e_o_Nextjs>. Acesso em: 03 ago 2021.
Citado 2 vezes nas páginas 25 e 26.

HEJAZI, H.; RAJAB, H.; CINKLER, T.; LENGYEL, L. Survey of platforms for massive iot. In:
2018 IEEE International Conference on Future IoT Technologies (Future IoT). [S.l.: s.n.],
2018. p. 1–8. Citado na página 30.

HOSTINGER. O Que é React e Como Funciona? 2021. Internet. Disponível em: <https:
//www.hostinger.com.br/tutoriais/o-que-e-react-javascript>. Acesso em: 22 jul 2021. Citado na
página 25.

KODALI, R. An implementation of mqtt using cc3200. In: . [S.l.: s.n.], 2016. p. 582–587. Citado
na página 24.

KUROSE, J. F.; ROSS, K. W. Redes de computadores e a internet. São Paulo: Person, v. 28,
2013. Citado 2 vezes nas páginas 23 e 24.

https://www.alura.com.br/artigos/next-js-vantagens
https://www.alura.com.br/artigos/next-js-vantagens
https://blog.scottlogic.com/2021/02/17/probably-dont-need-microfrontends.html
https://blog.geekhunter.com.br/um-guia-para-usar-react-js/#O_que_e_realmente_o_React_JS
https://blog.geekhunter.com.br/um-guia-para-usar-react-js/#O_que_e_realmente_o_React_JS
https://blog.geekhunter.com.br/o-que-e-next-js/#O_que_e_o_Nextjs
https://www.hostinger.com.br/tutoriais/o-que-e-react-javascript
https://www.hostinger.com.br/tutoriais/o-que-e-react-javascript

48 Referências

MOVILE. Arquitetura micro frontend. 2021. Internet. Disponível em: <https://movile.blog/
arquitetura-micro-frontend/>. Acesso em: 22 oct 2021. Citado na página 27.

RAJPUT, S. Top 15 Standard IoT Protocols in Germany Berlin, Munich, Frankfurt. 2020.
Internet. Disponível em: <https://www.omni-academy.com/top-standard-iot-protocols-germany/
>. Acesso em: 17 nov 2021. Citado na página 22.

SÁTYRO, W. C.; SILVA, M. T. da; BONILLA, S. H.; GONÇALVES, R. F.; SACOMANO, J. B.
Indústria 4.0: Conceitos e fundamentos. [S.l.]: Blucher, 2018. Citado na página 21.

SOURCE, F. O. O Que é React e Como Funciona? 2021. Internet. Disponível em: <https:
//reactjs.org/>. Acesso em: 23 jul 2021. Citado na página 25.

TRAZZI, B. M. Smart-Air - Um mecanismo inteligente para o controle de sistemas de ar-
condicionado. 51 f. Monografia (Trabalho de Conclusão de Curso) — ICMC-USP, Universidade
de São Paulo, São Carlos - SP, 2021. Citado 3 vezes nas páginas 22, 33 e 45.

VERCEL. The React Framework for Production. 2021. Internet. Disponível em: <https:
//nextjs.org/>. Acesso em: 03 ago 2021. Citado na página 26.

VERMA, A.; PRAKASH, S.; SRIVASTAVA, V.; KUMAR, A.; MUKHOPADHYAY, S. C.
Sensing, controlling, and iot infrastructure in smart building: A review. IEEE Sensors Journal,
v. 19, n. 20, p. 9036–9046, 2019. Citado na página 30.

WAZLAWICK, R. Engenharia de software: conceitos e práticas. [S.l.]: Elsevier Editora Ltda.,
2019. Citado na página 35.

WITKOWSKI, K. Internet of things, big data, industry 4.0 – innovative solutions in logistics and
supply chains management. Procedia Engineering, v. 182, p. 763–769, 2017. ISSN 1877-7058.
7th International Conference on Engineering, Project, and Production Management. Disponí-
vel em: <https://www.sciencedirect.com/science/article/pii/S1877705817313346>. Citado na
página 21.

YUAN, M. Conhecendo o MQTT. 2017. Internet. Disponível em: <https://developer.ibm.com/
br/articles/iot-mqtt-why-good-for-iot/>. Acesso em: 17 jun 2021. Citado na página 23.

https://movile.blog/arquitetura-micro-frontend/
https://movile.blog/arquitetura-micro-frontend/
https://www.omni-academy.com/top-standard-iot-protocols-germany/
https://www.omni-academy.com/top-standard-iot-protocols-germany/
https://reactjs.org/
https://reactjs.org/
https://nextjs.org/
https://nextjs.org/
https://www.sciencedirect.com/science/article/pii/S1877705817313346
https://developer.ibm.com/br/articles/iot-mqtt-why-good-for-iot/
https://developer.ibm.com/br/articles/iot-mqtt-why-good-for-iot/

	Folha de rosto
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Contextualização
	Motivação e Objetivos
	Organização

	Métodos, Técnicas e Tecnologias Utilizadas
	Considerações Iniciais
	Internet das Coisas (Internet of Things, IoT)
	Microcontrolador ESP32
	Protocolos de Comunicação
	Protocolo de Transferência de Hipertexto (do inglês, HyperText Transfer Protocol (HTTP))
	Transporte de Filas de Mensagem de Telemetria (do inglês, Message Queue Telemetry Transport (MQTT))

	Recursos e técnicas utilizadas para desenvolvimento do Front-end Web
	Biblioteca React Js
	Framework Next.Js
	TypeScript
	Micro Front-end

	Cluster Taurus
	Considerações Finais

	Trabalhos Relacionados
	Considerações Iniciais
	Trabalhos Relacionados
	Considerações Finais

	Desenvolvimento
	Considerações Iniciais
	O Projeto
	Atividades Realizadas
	Modelagem da arquitetura para controle dos AC pela aplicação Web
	Requisitos da aplicação Web
	Implementação

	Considerações Finais

	Resultados
	Considerações Iniciais
	Protótipo do Front-end Smart-Air Web
	Depoimento de uso do usuário
	Considerações Finais

	Conclusão
	Contribuições
	Trabalhos Futuros

	Referências

